AERO-ASTRONAUTICS REPORT NO. 11

SIMILARITY LAWS FOR LIFTING BODIES
OF MINIMUM DRAG AT HYPERSONIC SPEEDS

BY

ANGELO MIELE

r“' "
z (ACCESSION NUMBER) 3
= (THRU) S
E et
E / |
E (PAGES)
5 (CODE)
(NASA CR OR n{x ofR AD NUMBER) (CA VR
Y)

RICE UNIVERSITY
1965




l o AAR-11

SIMILARITY LAWS FOR LIFTING BODIES

OF MINIMUM DRAG AT HYPERSONIC SPEEDS (*)
by

ANGELO MIELE ()

SUMMARY 217‘ /)/? ’7

The problem of determining the longitudinal and transversal contours mini-
mizing the drag of a flat—-top body in hypersonic flow is considered under the
hypotheses that the pressure distribution is Newtonian and the skin-‘friction
coefficient is constant. It is also assumed that the body is slender and homothetic
and that certain arbitrarily prescribed values are assigned to -- at most -- the
lift, the pitching moment, the planform area, the frontal area, the wetted area,

the volume, the length, and the thickness. Two similarity laws are determined.
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The Similarity Law for Longitudinal Contours permits one to determine the

optimum longitudinal contour of a body of arbitrary transversal contour from the

known optimum longitudinal contour of a reference body (a body of semicircular

cross section); the aerodynamic and geometric quantities of the latter must be

replaced by appropriate proportional quantities of the former, with the proportionality

constants depending only on the prescribed transversal contour.

The Similarity Law for Transversal Contours permits one to determine the opti-

mum transversal contour of a body of arbitrary longitudinal contour from the known

optimum transversal contour of a reference body (a conical body); the aerodynamic

and geometric quantities of the latter must be replaced by appropriate proportional

quantities of the former, with the proportionality constants depending only on the

prescribed longitudinal contour.
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1. INTRODUCTION

In a previous report (Ref. 1), the basic theory of slender, lifting bodies in the

hypersonic regime was formulated under the following hypotheses: (a) a plane of

symmetry exists between the left-hand and right-hand sides of the body; (b) no

plane of symmetry exists between the upper and lower parts; however, the inter-

section of these parts is a curve contained in a plane perpendicular to the plane

of symmetry, called the reference plane; (c) the base plane is perpendicular to

both the plane of symmetry and the reference plane; (d) the body is slender in the

longitudinal sense, that is, the square of the slope of any meridian contour is small

with respect to one; (e) the body is homothetic, in the sense that each cross section

is geometrically similar to the base section and has the same orientation; (f) the

free-stream velocity is perpendicular to the base plane and, therefore, is parallel

to the line of intersection of the plane of symmetry and the reference plane; (g) the

pressure coefficient is twice the cosine squared of the angle formed by the free-

stream velocity and the normal to each surface element; (h) the skin-friction coeffi-

cient is constant; and (i) the contribution of the tangential forces to the lift is
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negligible with respect to the contribution of the normal forces. Direct methods

were employed in Ref. 1. Specifically, the class of flat-top bodies whose longi-

tudinal contours are power laws and whose transversal contours are semielliptical

or triangular was considered, and the thickness ratio, the power law exponent,

and the elongation ratio of the cross section were determined so as to maximize the

lift-to-drag ratio.

It should be noted that the above direct methods supply results which are valid

for only particular longitudinal and transversal contours. Therefore, it is important

to reformulate the minimal problem by using the indirect methods of the calculus

of variations, that is, by eliminating any previous restriction on the class of bodies

being investigated. Thus, two complementary variational problems arise: (1) to

determine the optimum longitudinal contour for an arbitrarily prescribed transversal

contour; and (2) to determine the optimum transversal contour for an arbitrarily

prescribed longitudinal contour. In each case, the quantity to be minimized is the

drag, and constraints may be imposed on aerodynamic quantities (lift and pitching

moment) and geometric quantities (planform area, frontal area, wetted area, volume,
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length, and thickness).

Since the number of possible variational problems is practically without limit,

cconomy of thought leads one to pose the following questions: (1) Is there any simi-

larity law which permits one to determine the optimum longitudinal contour of a

body of arbitrary transversal contour from the known optimum longitudinal contour

of a reference body? and (2) Is there any similarity law which permits one to deter-

mine the optimum transversal contour of a body of arbitrary longitudinal contour

from the known optimum transversal contour of a reference body? It is the purpose

of this paper to show that these similarity laws do exist. By means of them, the

results obtained in Ref. 2 for nonlifting bodies are extended to the more important

case of lifting bodies .
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2. AERODYNAMICS QUANTITIES

In order to relate the drag, the lift, and the pitching moment of a body to its

geometry, we define two coordinate systems (Fig. 1): a Cartesian coordinate

system Oxyz and a cylindrical coordinate system Oxr8. For the Cartesian coordinate

system, the origin O is the apex of the body; the x-axis is the intersection of the

plane of symmetry and the reference plane, positive toward the base; the z-axis

is contained in the plane of symmetry, perpendicular to the x-axis, and positive

downward; and the y-axis is such that the xyz-system is right-handed. For the

cylindrical coordinate system, r is the distance of any point from the x-axis, and

§ measures the angular position of this point with respect to the xy-plane.

We refer to the class of flat-top bodies (Fig. 2) whose lower surface is described

by the relationship

[}

r = r, 9) L

Thus, in the light of hypotheses (a) through (d) and (f) through (i) of the introduction,

the drag D, the lift L, and the pitching moment M per unit free-stream dynamic

pressure q are given by (Ref. 1)
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r,”. ;'T'Y/Zr‘ o f r
D/q = 2 i( 231,372 + rg?) + Cp ¥ r2 + 12 | dxdd + 2C¢ 10 r(x, 0)dx

O t') - v

Ny PTT/Zr -
L/q = 4j0 JO i_rz rxz/(r2 + 1‘@2)_] (rsin® — rgcos 8) dxdf 2)
M/q = 4J J 3xr2rx2/(r2 + rez)_j (r sin® — rg cos 8) dxdf

070

where £ is the length of the body and C¢ the skin-friction coefficient.

2.1. Homothetic Body. Next, we employ hypothesis (e) and focus our attention

on the class of bodies such that any transversal contour is geometrically similar

to the base contour and has the same orientation. The geometry of these homothetic

bodies is given by

r = 2("/uA(5)B(3) 3)
where
T = X¢,7/2) (4)

g/

denotes the thickness ratio evaluated in the meridian plane 6 =m/2 and

2, /2
u = -liii(;fol)—) )
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denotes the elongation ratio evaluated in the transversal plane x = /. Also,

£ = x/4 denotes a nondimensional abscissa, A(£) a function describing the longi-

tudinal contour, and B(0) a function describing the transversal contour such that

A@©) = 0, Ay =1
(©)
B@O) =1, B(1/2) = u
In the light of Eq. (3), the drag, the lift, and the pitching moment of a homothetic
body can be written as (Ref. 1)
D/q = 4271 <T3 L +C 12]2)
L/q = 1?2 73 I3]3 (7)
M/q = 23 7314]4
where Iy, ...., I4 denote the following integrals depending on the longitudinal contour:
\"Z « 3
Il = J’ AA dg
0
4
I, = J‘ AdE
2
g ®)
I3 = | AAZae
rﬂ,

L4 =, £ AAZ dF
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and J; , ...., J4 denote the following integrals depending on the transversal

contour:

. nTT/Zr . 7
o= @/t BB+ B2) d
-JO - o
r /2 o
J, = @/u) 1+ ~B"+B" dd |
JO -
9
3y /20 4,2 a2 : ©
I3 = @/u7) | ' B*/(B° + B“) | (Bsin® — Bcosf)db
“0
/2T .o )
I, = (4/u.3)f ' BY/(B% + B%) | (Bsin® — B cos &) d8

0
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3. GEOMETRIC QUANTITIES

For the class of flat-top bodies whose lower surface is described by Eq. (1),
the planform area S, the frontal area S¢, the wetted area S, and the volume V
are given by
4
S =2 J T (x, 0) dx
0

m/2
S¢ = j r2 (g, 8) db
0

10)
ndoeT/2 5 2 r4
Sy = 2] | Nré + rg dxd6 + 2 | r(x,0)dx
‘0 *0 0
pd I'-TT/Z 2
A% = .J\ J r°dx d6
0°0
In particular, if the body is homothetic, Eqs. (10) become
= 42
S = 4T 15]5
= 2.2
Sf = 4°T 16]6
au)

9]
I
=

[\
_;
Yt
~
—
1

<
i

&-
_1

where
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)
= | F
I = 1
L
1, = | AdS
7 7 g
ol
Ig = | A%
0
and
JS = 2/u
2, 12,
— (
i :
Jg = (1/uf) B df
do
r T2 s
j7=(2/u)Il+J B + B dGJ
-1/ 2
g = /2y [T B ae
’0

Other possible constraints may have the form

Const = 2 and/or Const =

meaning the length and/or the thickness are given.

LT

AAR-I]

2)

3)

(14)
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4. SIMILARITY LAW FOR OPTIMUM LONGITUDINAL CONTOURS

Now, suppose that the transversal contour B(0) is given, meaning that the
quantities ]1 y ey ]8 are known a priori. Assume that the skin-friction
coefficient is given and that certain arbitrarily prescribed values are assigned

to -- at most - - the lift, the pitching moment, the planform area, the frontal

area, the wetted area, the volume, the length, and the thickness. Observing that

the right-hand sides of Eqs. (7), (11), and (14) depend on the parameters £, T and

the longitudinal contour A(%) through the integrals 1, ...., Ig, we formulate

the following variational problem: "In the class of parameters £, T and functions

A (€) which satisfy the conditions (6-1), (7-2), (7-3), (11), and (14), find that parti-

cular set which minimizes the total drag (7-1)".

AAR-11

Rather than solving this problem as stated, we introduce the following modified

aerodynamic and geometric quantities:
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~ ~ T 1
D = (2n/};)D, C, = 1 2m],/@ + M]; | G
L = (4/]3)L, M = (4/]4)M
(5)
S = (2/5)S, S = (1/2]6) St
~ r 7 ~
Sy = Q2 +7)/J7] S8 V = (m/2]g)V
and rewrite Eqs. (7) and (11) in the form
B/erq = 227  ?311 + (2 +TT)Ef IZ/ZTT_j
Z/4q = 42 7313
N ~ 3.3
M/4q = 4°T 14
sz = 4t (16)
25 /m = 22721

S, /(2+m = £11,

ZG/TT = ,ZB TZIS

—

We observe that, since the transversal contour is given, the modified skin-friction

coefficient Cg, lift L, pitching moment M, planform area S, frontal area Sf,

~ ~

wetted area SW , and volume V are known a priori. Furthermore, the modified
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drag 5 is proportional to the actual drag. This being the case, the previous
minimal problem is equivalent to that of finding, in the class of parameters £, T
and functions A (§) which satisfy the conditions (6-1), (14), and (16-2) through
(16-7), that particular set which minimizes the functional (16-1).

We note that, for a flat-top body of semicircular cross section, that is, for

B =1, 0 <6 < /2 (17)

the expressions (9) and (13) become

I}
NN

i = 2m, ]2=2+rr, J3 = 4, J4
(18)

—
wn
I
()

]6=TT/2, J =2 +m, ]8=TT/2

with the implication that
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r

D/2mq = 'QZTLTBIl + @2 +mMC 12/2TT;it

L/4q = 22731,

M/4q = 1’.37314

S/2 = 227 I )

25, /7 = !52T216
ey = g2
Sw/(2 +17) 4 T1,

2v/m = 4342 Ig

Since Eqs. (16) and (19) are formally identical, the following Similarity Law for

Longitudinal Contours can be stated: "The parameters £, T and the function

A (E) which optimize the longitudinal contour of a body of arbitrary cross section

are identical with those optimizing the longitudinal contour of a body of semi-

circular cross section providing the aerodynamic and geometric quantities of the

latter are replaced by the modified aerodynamic and geometric quantities (15) of

the former".
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5. SIMILARITY LAW FOR OPTIMUM TRANSVERSAL CONTOURS

Now, suppose that the longitudinal contour A (€) is given, meaning that the
quantities I1 y e , 18 are known a priori. Assume that the skin-friction coef-
ficient is given and that certain arbitrarily prescribed values are assigned to -- at
most -- the lift, the pitching moment, the planform area, the frontal area, the wetted
area, the volume, the length, and the thickness. Observing that the right-hand sides
of Eqs. (7), (11), and (14) depend on the parameters 4, T and the transversal contour
B(B) through the integrals ]l » +...» ]g,» we formulate the following variational problem:
"In the class of parameters 4, 7 and functions B(9) which satisfy the conditions (6-2),
(7-2), (7-3), (11), and (14), find that particular function which minimizes the total
drag (7-1)".

Rather than solving this problem as stated, we introduce the following modified

aerodynamic and geometric quantities:
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D = (/21)D, C; = (I,/1) G
L = Q/2IyL, M = (1/31)M
(20)
s = (/21g) S, S; = /1) S;
Sy = (/21) S, Vo= 131y V
and rewrite Egs. (7) and (11) in the form
zg/q = 127 (T331 + Ef ]2)
2L/q = 4273,
3M/q = 1313],
2s = 22T 1)
’§f = L2T2]6
28, = &2T17
3V = 4302

We observe that. since the longitudinal contour is given, the modified skin-friction
coefficient Ef, lift TJ » pitching moment M , planform area §, frontal area § ,

wetted area gw , and volume V are known a priori. Furthermore, the modified drag D
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is proportional to the actual drag. This being the case, the previous minimal problem
is equivalent to that of finding, in the class of parameters 4, 7 and functions B(9)
which satisfy the conditions (6-2), (14), and (21-2) through (21-7), that particular set
which minimizes the functional (21-1).

We note that, for a conical body, that is, for

A= E, 0 <& <1 (22)

the expressions (8) and (12) become

Il = 1/2, 12 = 1/2, 13 = 1/2, 14 = 1/3
(23)

IS = 1/2, 16 =1, I- = 1/2, 18 1/3

with the implication that
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2D/q = L3 (%) + cply)

2L/q = &2r313

3M/q = %37314

28 = 427 Js (24)
s, = ¥l

25, = i1,

3V = L3T2]8

Since Egs. (21) and (24) are formally identical, the following Similarity Law for

Transversal Contours can be stated: "The parameters 4, T and the function B(6)

which optimize the transversal contour of a body of arbitrary longitudinal contour

are identical with those optimizing the transversal contour of a conical body providing

the aerodynamic and geometric quantities of the latter are replaced by the modified

aerodynamic and geometric quantities (20) of the former".
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6. DISCUSSION AND CONCLUSIONS

In the previous sections, the minimum drag problem is considered for the

L<r

class of flat-top, slender, homothetic bodies flying at hypersonic speeds under

that the pressure distribution is Newtonian and the skin-friction

coefficient is constant. It is also assumed that certain arbitrarily prescribed

values are assigned to -- at most - - the lift, the pitching moment, the planform

area, the frontal area, the wetted area, the volume, the length, and the thickness.

Under these hypotheses, two similarity laws are obtained.

The Similarity Law for Longitudinal Contours permits one to determine the

optimum longitudinal contour of a body of arbitrary cross section from the known

optimum longitudinal contour of a reference body (a body of semicircular cross

section). Conversely, the Similarity Law for Transversal Contours permits one

to determine the optimum transversal contour of a body of arbitrary longitudinal

contour from the known optimum transversal contour of a reference body (a conical

body). Finally, the simultaneous use of these similarity laws leads to the idea

that -- by combining the results valid for flat-top bodies of semicircular cross

T T W TR W e
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section with those valid for conical bodies -- truly three-dimensional, slender,

homothetic, lifting bodies of minimum drag can be determined.

AAR-11
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Fig. 1.

Fig. 2.

Coordinate system.

Flat-top body.

23
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